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The idea of isotropic resonant magnetism in the visible range of frequencies known from precedent publi-
cations was developed having in mind achievements of modern chemistry. Plasmonic colloidal nanoparticles
covering a silica core form a cluster with resonant and isotropic magnetic responses. Two approximate models
giving a good mutual agreement were used to evaluate the magnetic polarizability of the cluster and the
permeability of the magnetic composite medium. The possibility of obtaining isotropic doubly-negative media
in this way was also studied and the corresponding design was proposed.
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I. INTRODUCTION

The interest in artificial resonant magnetism in the optical
range which was recently inspired by the development of
metamaterial science �see e.g., in Refs. 1 and 2� is expected
to grow after the successful demonstration of the subwave-
length optical imaging obtained in the far zone of objects
with the use of the so-called hyperlenses.3,4 Hyperlenses
transport evanescent waves produced by an object and trans-
form them into propagating ones, creating in this way spa-
tially magnified images with subwavelength details of the
object. Known hyperlenses contain metal nanolayers alter-
nating with dielectric ones and operate with TM-polarized
waves. This operation for the TM polarization becomes pos-
sible due to the negative permittivity of metals in the visible
frequency range. Similar operation with the TE-polarized
light would require materials with negative permeability.
However, materials with negative � in the visible range do
not exist in nature. Hyperlenses operating with the TE-
polarized light are one of motivations to create artificial mag-
netic media for the visible range.

These prospective optical magnetic media refer to the
class of metamaterials �MTMs�. Recently, many attempts to
engineer such MTM were reported. They include, for ex-
ample, lattices of paired plasmonic nanowires, nanoplates,
nanocones, fishnets, and plasmonic split rings.5–12 These
structures are all geometrically strongly anisotropic. The
strongest magnetic response corresponds to one specific di-
rection of the propagation of electromagnetic wave, and
there are directions for which no magnetic response can be
observed. In all cited papers the magnetic response was re-
ported only for a single propagation direction.

Formally, the resonant magnetic permeability as well as
the permittivity can be attributed to photonic crystals as well
�see, e.g., Refs. 13–15�. However, in this case both � and �
have different physical meaning than for homogeneous me-
dia. A cubic photonic crystal can be characterized by scalar
effective � and �; however its electromagnetic response is
not isotropic. At frequencies where a cubic lattice becomes a
photonic crystal, this lattice �by definition of photonic crys-
tals� has spatially dispersive electromagnetic response. In
other words, the refraction index n and the wave impedance
Z depend on the wave vector. At a fixed frequency these
parameters depend on the wave propagation direction. In-

stead of n and Z one can describe the eigenwaves in cubic
lattices in terms of effective material tensors �eff and �eff,
which also are essentially depending on the angles that the
propagation direction makes with the lattice axes. In other
words, in the presence of strong spatial dispersion, even cu-
bic lattices are anisotropic.16–18

The first work devoted to the really isotropic magnetism
in the visible range �that cannot be, in principle, achieved in
the mentioned structures� was, to our knowledge, Ref. 19. In
Ref. 19 one suggested to prepare optical magnetic media
using effective plasmonic nanorings. The effective nanoring
is a coplanar group of metal nanospheres �colloids of noble
metals� located equidistantly on a certain circle. In high-
frequency magnetic field H� 0 applied orthogonally to plane of
the nanoring, the colloidal particles forming it are polarized
in the azimuthal direction with respect to the direction of H� 0.
The resonant magnetic moment induced in a nanoring is di-
rected normally to its plane and its value is proportional to

the projection of H� 0 to this normal direction.
To obtain an isotropic magnetic MTM of plasmonic nano-

rings, one should fabricate a bulk array containing nanorings
oriented in all three directions, and the period of the array
should be small enough so as to avoid the strong spatial
dispersion. The resonance of the effective permeability � of
the array should be strong enough to obtain Re����0 at
some frequencies. It is achievable only for very dense pack-
ages of such nanorings.19 In Ref. 19 the needed concentra-
tion of nanorings corresponded to almost touching nanorings
forming a face-centered-cubic or a body-centered-cubic lat-
tice. It is not clear how to fabricate such structures.

Another MTM with isotropic permeability strongly reso-
nant in the visible range was theoretically designed in Ref.
20. It is formed by isotropic complex magnetic scatterers
arranged in a simple-cubic lattice. Although the required
package of magnetic scatterers in Ref. 20 is not so dense as
in Ref. 19 and the MTM operates at the frequencies well
below the first Bragg resonance �i.e., with high accuracy, it
can be treated as a homogeneous continuous medium�, we
doubt that the structure20 will be fabricated in the near future
with the desired properties.

Magnetic scatterers in Ref. 20 are spherical clusters with a
diameter of 30–40 nm uniformly filled with very small �2–3
nm� silver �or gold� nanocolloids. These spherical clusters
contain many resonant particles and can be treated as opti-
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cally small spherical bodies filled with a plasmonic metama-
terial. So, a cubic lattice of these spheres behaves as a ho-
mogeneous metametamaterial. The metamaterial spheres are
designed so that they experience the magnetodipole Mie
resonance at the operational frequency �0. The Mie reso-
nance condition can be satisfied due to the high positive
effective permittivity of the cluster. This condition requires
high precision in the large number Ntot of nanocolloids per
one cluster. In Ref. 20 there is no link to an existing or
prospective technology that would allow one to fabricate
such a metametamaterial. From known publications on self-
assembled metal nanostructures, it is not clear how to control
Ntot �note that the nanocolloids in the cluster should not
touch one another; otherwise they form a structure with to-
tally different properties for which the claimed Mie reso-
nance will be not achievable�.

The purpose of the present paper is to design a structure
with isotropic magnetic response in the visible range which
would be feasible with existing technologies. This structure
is a cluster of core-shell nanoparticles centered by a silica
core. Its electromagnetic isotropy results from its geometry
as shown in Fig. 1.

II. CORE-SHELL MAGNETIC CLUSTERS

The design of the optical magnetic scatterer suggested in
this paper is based on the literature devoted to arrays of
core-shell nanoclusters in a liquid or porous host medium.
The prospective technology is based on self-assembly. First,
one can fabricate core-shell particles with the characteristic
size of a few tens of nanometers. These particles can have
metal core and polystyrene shell.21 Second, the silica core
with diameter of 100–200 nm �the technology allows in prin-
ciple to reduce this diameter to 40–50 nm� can be completely
covered by mutually touching polystyrene nanospheres with
a smaller or the same diameter.22,23 Nothing changes in the
adhesion of the particles on the silica core if there are metal
nanocolloids inside them. The design illustrated by Figs. 1�a�
and 1�b� will allow us to reliably control the separation d
between colloidal particles. For touching core-shell nano-
spheres located on a silica core, it is simply equal to the
double thickness of the polystyrene shell.

The idea of self-assembling aggregates with a dielectric
core and metal nanoparticles forming a discrete shell was

probably first realized in Ref. 24. However, this process led
to the complete covering of the silica core by contacting gold
nanoparticles. The process chemically stimulated by some
acids which allowed one to control its speed and to obtain
the needed number of nanocolloids per one core was de-
scribed in Ref. 25. Later, nanoclusters comprising a few tens
of colloidal particles on a silica core with the diameter of the
order of 100 nm �and, possibly less� were reported in Ref.
26. The structure from Ref. 26 is close to our design. For
obtaining the strongest electromagnetic response for given
sizes �of the core and of the nanocolloids�, the number of
nanocolloids Ntot per one silica core should be as large as
possible. However, unlike the design in Ref. 26, the metal
nanoparticles should not be in contact with one another. This
is why we suggest combination of the technologies of metal-
dielectric core-shell particles and dielectric-dielectric core-
shell clusters.22,23

The geometry and the small optical size of clusters
sketched in Figs. 1�a� and 1�b� ensure isotropic electric and
magnetic-dipole responses. At one frequency of the incident
light, the induced electric dipole of the nanocluster domi-
nates when the polarization of colloidal particles is parallel
to the electric field of linearly polarized light. At another
frequency the induced magnetic dipole dominates, and the
polarization of colloidal particles is azimuthal with respect to
the direction of the magnetic field. In other words, the ap-
plied magnetic field forms, like in Ref. 19, effective nano-
rings around the silica core. Both electric and magnetic reso-
nant frequencies originate from the plasmonic resonance of
an individual colloidal nanosphere. The magnetic resonance
is the prime interest for us, and we call the cluster shown in
Fig. 1 a magnetic nanocluster �MNC�.

Below we will see that the frequency of the magnetic
resonance of MNC is strongly reduced compared to the fre-
quency �P of the plasmonic resonance of a single nanocol-
loid. This effect results from the strong electrostatic coupling
between the nanocolloids in the MNC. This electrostatic cou-
pling was discussed also in Ref. 19, where it also led to the
redshift effect. However, in the present geometry this effect
is much stronger since in one MNC there are many effective
nanorings. The strong redshift of the resonant frequency al-
lows one to miniaturize the MNC and allows homogeniza-
tion models �e.g., the Maxwell-Garnett model� for calculat-
ing the permeability of the bulk array. This was also done in
Ref. 19 for arrays of effective nanorings but with our design
we have more justifications for this approximation.

In order to obtain negative permeability the package of
MNC should be rather dense. For example, an array can be
designed as a body-centered-cubic �bcc� lattice sketched in
Fig. 1�c�. The cubic lattice is optically isotropic only if the
absolute values of the wave vectors q�1 and q�2 for two waves
with the same frequency propagating in two different direc-
tions 1 and 2 �e.g., one is along the lattice axis and the other
is along the diagonal� are equivalent. The difference �q1
−q2� is the effect of the lattice spatial dispersion which is
also called strong spatial dispersion.27 It is usually neglected
when the optical size D of the unit cell is not larger than
�r /4, where �r is the resonant wavelength in the host me-
dium. Under this condition the dispersion diagram of cubic
lattices of metal �plasmonic� inclusions is usually close to

FIG. 1. �Color online� An optical magnetic nanocluster �a bulk
isotropic scatterer with the magnetic resonance�: �a� a general view
of a cluster of covered plasmonic nanocolloids located on a dielec-
tric core, �b� the cross section of a MNC, and �c� the two-
dimensional sketch of a bcc lattice of MNC.
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that of a medium with local effective material parameters
�i.e., parameters with Lorentz’s frequency behavior indepen-
dently on the wave vector�.18,27–30 This condition is ensured
by the significant redshift of the magnetic resonance com-
pared to �P.

To be strict we have to mention that effects of strong
spatial dispersion are possible for lattices of resonant par-
ticles even if D�0.25�r �see, e.g., in Refs. 31 and 32�. The
effects of strong spatial dispersion in such cases correspond
to extreme values of the material parameters calculated in the
framework of the homogenization model, namely, to fre-
quencies at which ��0, ����1, ��0, and ����1. At other
frequencies �not only at frequencies below the resonance
band of inclusions but also at most part of frequencies within
this resonance band�, the Maxwell-Garnett homogenization
model is still adequate. Our theory refers to these frequen-
cies.

The total number Ntot of colloidal nanospheres per one
MNC can be expressed through the core radius a, the colloid
radius ap, and the separation d between metal spheres �see
Fig. 1�,

Ntot = �4��a + ap + d/2�2

�2ap + d�2 � . �1�

Here �A� denotes the integer part of the number A. In this
formula the curvature of the portion � of the spherical sur-
face with radius R0=a+ap+d /2, which is cut of the sphere
of radius R0 �this sphere centers the nanocolloids� by one
core-shell particle of radius ap+d /2, is neglected. In other
words, in our calculations the surface � of the effective
sphere R0 per one colloidal particle is assumed to be a planar
square with the side 2ap+d.

III. TWO MODELS OF MNC

Two approximate models for obtaining the magnetic po-
larizability amm of a MNC are illustrated by Figs. 2�a� and
2�b�. The agreement of their results can be considered as a
validation of these results. These models describe in two
different ways the electromagnetic interaction of colloidal
particles. In the first model the nanocolloids on the dielectric
core are assumed to form regular rings around the z axis. The
rings of radii Rj are distanced by ap /2 from one another. The
distance between the nanoparticles in any ring is also equal
to d=ap /2. The presence of the polystyrene shell of nanocol-
loids does not influence the result since the permittivity of
the shell is equal to that of the matrix ��h=2.2�.

In the second model the discrete structure of core-shell
plasmonic nanoparticles �a metashell� is treated as an
effective-medium layer of thickness 	=2ap+d. This is the
same approach as was used in Ref. 20 for spherical nano-
clusters treated as metaspheres. The bulk azimuthal elec-
trodipole polarization P
 and the isotropic permittivity �L of
this metashell can be easily calculated analytically. Below
we find the magnetic polarizability amm of MNC in the
closed form.

The presence of the central silica core does not influence
the result due to the absence of its electric polarization in the
applied magnetic field: the magnetic moment of the core is

very small, and it was checked analytically that the interac-
tion of this magnetic moment with the metashell is negli-
gible. The permittivity of the silica core �s=4��h=2.2 in-
fluences only weakly to the response of colloidal spheres.
The polarizability � of a single colloidal particle is assumed
to be the same as if nanocolloids were located in the uniform
medium with permittivity �h,

� = �	4�ap
3�0�h

�m − �h

�m + 2�h

−1

− i
k3

6��0�h
�−1

. �2�

Here �m is the permittivity of the metal which is taken in the
same form as in Ref. 19,

�m = �i −
�2�fp�2

�2 + i
�2��2fpfd

�2 . �3�

For silver colloids we have the plasma linear frequency fp
=2175 THz, the damping frequency fd=4.35 THz, and the
ultraviolet permittivity �i=5.19

The amplitude of the magnetic moment of every effective
nanoring shown in Fig. 1�a� is proportional to the amplitude

H� 0 of the magnetic field of light. Let the axis z be directed

along H� 0 �see Fig. 1�b��.
The physical meaning of the artificial magnetism is re-

lated with the Faraday effect of electromagnetic induction. In
the structure there are no materials with spin moments.
Therefore, the action of the magnetic field to the structure is
completely described in terms of the curl �nonpotential� part
of the electric field of light. In other words, the high-
frequency magnetic response of scatterers is the response to
the curl part of the high-frequency electric field.33 The re-
sponse to the uniform �across the scatterer� part of the elec-
tric field is electrical and in the present case can be approxi-
mated as the electrical dipole moment. The response to the
curl part of it can be approximated as the magnetic moment.
Since the particle is electrically small, the spatial variation in

R RR0
R0

FIG. 2. �Color online� Two models of the magnetic polarization
of MNC in the applied magnetic field directed along z: �a� nanocol-
loids form regular rings around the z axis, the colloidal particles are
equidistant in the rings of radii Rj �induced dipole moments are
shown by bold arrows�, and the rings are equidistant �the shells of
nanocolloids are not shown since their permittivity does not differ
from �h�, and �b� nanocolloids form around the core of an effective
metashell with effective azimuthal polarization P
. The reference
dipole p� of the metashell affects another dipole located at a point
with coordinates �
� ,z� ,R��.
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the electric field applied to it can be with high accuracy

assumed to be linear: E� �E� 0+E� 1R, where the second term
represents the curl part.

Indeed, assume that in the domain R�R0 , �z��R0 the ap-

plied electric field E� a varying with time as exp�−i�t� is azi-
muthal and can be presented as

E� a = 
� 0
iH0kR

2
, �4�

where =��0 /�0�h is the wave impedance of the host me-
dium of permittivity �h. Unit vector 
� 0 corresponds to the
cylindrical coordinates �R ,
 ,z� shown in Fig. 1�b�. From
Maxwell’s equations and Eq. �4�, we find the applied mag-

netic field H� a=z�0H0�1−k2R2 /2�. Since the term k2R2 /2 in
this expression is small compared to unity, we conclude that
the excitation by the linearly varying high-frequency electric
field �4� is practically equivalent to the excitation by the
uniform �across the MNC� magnetic field of amplitude H0. In
other words, we calculate the magnetic moment of MNC

induced by the applied magnetic field H� 0=H0z�0 through the
electric-dipole moments of nanocolloids induced by the elec-
tric field �4�.

Due to the azimuthal symmetry of this excitation, the am-
plitudes of 
-oriented dipole moments pj  p�j� of colloidal
particles of any jth ring are identical. The z-directed mag-
netic moment mj of the jth ring can be found using formula
�8� of Ref. 19. The total magnetic polarizability of MNC is
then obtained as amm=�amm

�j� , where amm
�j� =mj /H0.

In both models the redshift of the resonance frequency of
MNC compared to the plasmonic resonance frequency �P of
the individual colloidal particle in the host medium with �h
=2.2 is determined by the electromagnetic coupling of col-
loids. The presence of the silica core with �c=4 slightly in-
creases this redshift since it is equivalent to the small in-
crease in the effective host medium permittivity with respect
to �h=2.2. We neglect the effect of the silica core for sim-
plicity of the model.

A. Model of regular rings

Consider a dipole p� = p�j�
� 0 shown in Fig. 2�b� which
belongs to the jth effective ring of MNC �these rings are
shown by dashed lines�. Assume that Ntot�1. Practically, the
model is applicable when Ntot�15, . . . ,20. It is easy to show
using auxiliary spherical coordinates and formula �1� for Ntot
that the radius of the jth ring is approximately equal to Rj

�R0 sin�2j�� /Ntot�. The z coordinate of the jth ring is z�j�
�R0 cos�2j�� /Ntot�. The number of dipoles Nj in the ring is
equal to Nj �2�Rj / �2ap+d�. The number of such rings in
MNC is equal to Nr���Ntot /2. The cylindrical coordinates
of the dipole p� in the jth ring are z=zj, R=Rj, and 

=2�q /Nj, where q=0, . . . , �Nj −1� is the integer number de-
termining the position of the dipole within the ring.

The field produced by dipole p� at the point with the co-
ordinates �z� ,R� ,
�� can be found from the standard for-
mula,

E� �R� ,R� �� =
1

4��0�h
�k2�r� � p�� � r�

eikr

r3

+ �3r�p� · r� − p�r2�	 eikr

r5 −
ikeikr

r4 
� . �5�

Here r=�R2+R�2−2RR� cos�
−
��+ �z−z��2 is the distance
between radiating p��j� and receiving p��n� dipoles of MNC.
Due to the azimuthal symmetry of the problem, only the 
th
component of the field produced by all rings of dipoles p�j�
is nonzero at the center of the receiving dipole p�n�, i.e., at
point �z� ,R� ,
��. In other words, the local electric field act-

ing on the dipole p�n� is orthogonal to the vector R� � shown
in Fig. 1�b�. Respectively, only the azimuthal component of

the vector E� �R� ,R� �� should be taken into account.
From Eq. �5� the scalar interaction coefficient of dipoles

p�j� and p�n� can be easily derived. It is defined as the 
th
component of the field produced by the unit azimuth-
oriented dipole located at point �z=zj ,R=Rj ,
=2�q /Nj�
and calculated at point �z�=zn ,R�=Rn ,
�=2�s /Nn�,

Qqs
nj =

eikr

4��0�hr5 ��kr�2�R�2 + �z − z��R� − RR� + cos�
 − 
��

��R2 + �z − z��R� − RR�� − 3RR� sin2�
 − 
���1 − ikr�

− cos�
 − 
���1 − ikr�r2� . �6�

The dipole moment of the receiving dipole is equal to p
=�Eloc. The local field is the sum of the external electric field
�4� Ea�R��= �iH0kR� /2� and all dipole fields,

Eloc = Ea�R�� + p�j��
s,j

Qqs
nj . �7�

This way we obtain the system of equations for dipole mo-
ments of colloidal nanospheres of any ring,

1

�
p�n� =

i��0H0R�n�
2

+ p�n� �
q=1

Nn−1

Q0q
nn + �

j�n

Nr

p�j� �
q=0

Nj−1

Q0q
nj .

�8�

Here the term with Q0q
nn describing the interaction of the di-

pole p�n� located at �z�=zn ,R�=Rn ,
�=0� with other dipoles
of the same nth ring is shared out. The expressions for coef-
ficients Q0q

nn entering this term correspond to z=z� in expres-
sion �6�. In this term the summation starts from q=1 since
q=0 corresponds to the reference dipole.

Solving system �8� we find dipole moments p�n�. The
magnetic moment of jth ring is calculated as in Ref. 19,

mj =
− i�p�j�NjRj

2
. �9�

Then we obtain the magnetic polarizability of the MNC as
the sum of mj letting H0=1,

amm =
− i�

2 �
j=1

Nr

p�j�NjRj . �10�

The relative effective permeability of the composite medium
is given by the well-known Maxwell-Garnett formula,
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�eff = 1 +
1

NMNC
−1 amm

−1 −
1

3

. �11�

Here NMNC is the volume concentration of MNC. It can be
expressed through the effective volume V0 per one magnetic
scatterer NMNC=1 /V0. For simple-cubic lattices V0=D3

while for body-centered lattices V0=D3 /2. In the first case
the lattice period D is larger than the particle size Dp while in
the second case D�2Dp /�3, where Dp=2�a+2ap�.

The inverse polarizability of a nanocolloid in Eq. �8� cor-
responds to formula �2� and contains the term �−ik3 /
6��0�h� that describes the radiation damping. The radiation
damping of the magnetic dipole with magnetic polarizability
amm should be described by the term �−ik3 /6��.19 It is known
that the radiation damping is cancelled out in regular three-
dimensional �3D� arrays �see, e.g., in Ref. 27�. For lattices
we should have used instead of Eq. �11� the relation:19

�eff = 1 +
1

NMNC
−1 	amm

−1 + i
k3

6�

 −

1

3

. �12�

However, the dissipative losses due to the plasmonic reso-
nances of metal nanospheres strongly dominate over the con-
tribution of radiation losses into the imaginary part of the
permeability, i.e., the difference in results of Eq. �11� and of
Eq. �12� is negligible.

B. Model of the continuous metashell

Replacing the discrete metashell of MNC by an effective
continuous shell, we introduce the bulk polarization P
 that
can be expressed in a usual way through the 
-polarized
electric field EMS distributed over the volume of the
metashell and its unknown effective permittivity �MS,

P
 = �0��MS − �h�EMS. �13�

The field EMS is related with the local field acting on any
colloidal nanosphere of the metashell by the Clausius-
Mossotti relation:

Eav = Eloc −
p

3V1�0�h
. �14�

Here V1=2ap�2ap+d�2 is the shell volume portion per one
colloidal nanosphere and p= P
V1 is the dipole moment of
the reference nanosphere. Using the formula p=�Eloc to-
gether with Eqs. �13� and �14�, we come to the Lorentz-
Lorenz formula for the permittivity of the metashell:

�MS = �h�1 +
3

3�0�hV1

�
− 1� . �15�

The definition of the magnetic moment of any volume V
comprising polarization currents j� reads as

m =
1

2
�

V

j� � r�dV .

It can be rewritten for the MNC in terms of the bulk polar-
ization P
,

m =
− i�

2
�

VL

P
RdV . �16�

Here VL=4�R0
2�2ap�=8�ap�a+ap�2 is the volume of the

spherical layer with central radius R0 and the thickness 2ap.
The integration of the bulk polarization across this layer can
be replaced by simple product P
�2ap�. The polar radius R
that enters Eq. �16� is shown in Fig. 2�b�. It can be expressed
in spherical coordinates as R���=R0 sin �. Then after substi-
tution of Eq. �13� into Eq. �16�, we obtain

m = − i��0ap��MS − �h�R0
2�

0

2�

d
�
0

�

d� sin �EMS���R��� .

�17�

The applied magnetic field was assumed above to be uniform
over the whole MNC, i.e., it is uniform over the metashell.
The magnetic field inside the metashell is practically not

perturbed compared to H� 0 since the shell material is a con-
tinuous dielectric medium with material parameters �MS and
permeability �MS=1. The azimuthal electric field within the

metashell, i.e., EMS is related to H� 0 by Maxell’s equations,
i.e., it is also not perturbed, compared to expression �4�. In
other words, the electric field at the circle of radius R��� is
related to the magnetic field H0 at the center of the MNC as
EMS���= i��0R���H0 /2= �iH0kR0 sin � /2�. After this sub-
stitution into formula �17� and trivial integration, we come
�letting H0=1� to the following formula:

m = amm =
4�

3
�k0R0�2V��MS − �h� , �18�

where it is denoted that V=R0
2ap and k0=k /��h=���0�0 is

the free space wave number.
Substituting Eq. �15� into Eq. �18� we obtain the final

closed-form formula for the magnetic polarizability of indi-
vidual MNC,

amm = 4��k0R0�2V
�h

3�0�hV1

�
− 1

. �19�

The permeability can be then found using Eqs. �11� and �12�.

C. Isotropic doubly-negative medium

The electric excitation of a MNC corresponds to the time-
dependent electric external field which can be approximately
considered as uniform over the MNC. Namely, let us assume
that the MNC is centered at the maximum of a standing wave
where the magnetic field vanishes. Then the applied electric
field,

MODEL OF ISOTROPIC RESONANT MAGNETISM IN THE… PHYSICAL REVIEW B 79, 045111 �2009�

045111-5



E� a = x�0E0�e−jky + ejky� , �20�

corresponds to the applied magnetic field H� a
=z�0E0�exp�−jky�−exp�jky�� /. The magnetic field as such
does not act to nanocolloids. Electric field �20� can be ap-
proximately considered as the uniform one over the volume

of the MNC �E� a=x�0E0� since kDp�1.
The model of regular rings for the permittivity can be

developed by a slight modification of formulas derived
above. We have to replace the term 0.5��0H0R0 in Eq. �8�
by ���0�0E0R0. Also, instead of formula �6� one should use
another expression for coefficients Qqs

nj,

Qqs
nj =

eikr

4��0�hr5 �k2�r2 − �R cos 
 − R� cos 
��2� + �1 − ikr�

��3�R cos 
 − R� cos 
��2 − r2�� . �21�

Solving Eq. �8� with these substitutions and letting E0=1, we
find the electric polarizability of the MNC as the sum of
dipole moments of nanocolloids �which are all parallel due to
the assumed symmetry of the MNC presented as an array of
regular effective rings�,

aee = �
j=1

Nr

p�j�Nj . �22�

The effective permittivity � of the composite of MNC is
found replacing in formula �15� the polarizability � of a
nanocolloid by the total electric polarizability of MNC aee
and V1 by the inverse concentration of MNC 1 /NMNC.

The strong Lorentz resonance of aee means a possibility
of realizing negative values of Re���. However, the electric-
dipole resonance frequency can differ strongly from the
magnetic-resonance frequency, and the regions where
Re����0 and Re����0 may not overlap. We have to spe-
cially engineer these regions in order to realize a doubly-
negative material. This turns out to be possible when the
covered metal particles located on the central core are dis-
tanced enough from one another and Ntot is rather small. This
design is feasible since the number of nanocolloids per one
core is controllable in the technology.23 Moreover, to realize
a doubly-negative metamaterial, one can use naked nanocol-
loids, i.e., the technology.26 The model of the continuous
metashell is not applicable for this design.

Instead of a solid silica core we can center MNC by a
core-shell particle. The additional nanocolloid inside the
silica shell helps to control the effective permittivity � of the
whole MTM. A MNC with this complex core can be named
as a magnetoelectric nanocluster �MENC�. An individual
MENC and a body-centered-cubic lattice of MENC studied
below are shown in Fig. 3. Modeling the response of MENC
we add the electric polarizability �0 of the metal-silica core
to the right-hand side of Eq. �22�. The polarizability �0 can
be found from Eq. �2� substituting into it the central core
radius b instead of ap. However, for b /a�0.5 the influence
of the dielectric shell to �0 cannot be ignored.34 In this case
we use formula �6� of Ref. 34 for the polarizability of a
core-shell spherical or spheroidal nanoparticle.

IV. RESULTS AND DISCUSSION

First, the results obtained in Ref. 19 for a single ring of
nanospheres, where Ntot=4, R0=38 nm, and ap=16 nm,

FIG. 3. �Color online� A magnetoelectric nanocluster is a MNC
in which the silica core is replaced by a core-shell particle: �a� a
single MENC with only six nanocolloids on the core and �b� a bcc
cubic lattice of MENC.
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FIG. 4. �Color online� Effective permeability of the array of MNC with sizes Dp=108 nm, a=22 nm, and ap=16 nm �R0=38 nm�
hosted in the matrix with �h=2.2. �a� One ring of nanocolloids in every MNC, in which the concentration of MNC is NMNC=95−3 nm−3. �b�
Three nanorings in every MNC, in which other parameters are the same. Real and imaginary parts of the permeability are shown by solid
and dashed lines, respectively.
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were reproduced. The concentration NMNC of effective mag-
netic scatterers in Ref. 19 was assumed to be equal to
NMNC=95−3 nm−3. This corresponds to almost touching
MNC in a fcc lattice. The metal of colloidal particles was
silver with permittivity �3�. In this case we used the first
model only since the second model cannot be applied to the
single ring case Nr=1. The geometry corresponds to the total
size of the magnetic cluster Dp=108 nm and to the spherical
core radius a=R0−ap=22 nm. In the present theory the dif-
ference of the core permittivity from that of the host medium
has no impact and our result should be the same as in Ref.
19. Our result for the effective permeability is presented in
Fig. 4�a�. It reproduces Fig. 2�b� of Ref. 19 with very high
accuracy.

If we keep the same separation of colloidal particles d
=10 nm as in the previous example, the maximal possible
number of colloidal particles for the spherical core of radius
that corresponds to this example is equal to Ntot=16. It cor-
responds to Nr=3. Keeping the same concentration NMNC
=95−3 nm−3 of the same MNC, we obtained with this geom-
etry the result shown in Fig. 4�b�. The redshift of the
magnetic-resonance frequency compared to fP in this case is
equal to 74.5 THz, i.e., 10% due to the presence of two
additional nanorings, where for single nanoring in Fig. 4�a� it
was equal to 62 THz or 8%.

A more significant redshift was obtained for the geometry
shown in Fig. 1 keeping the same total size of MNC Dp

=108 nm. The optimal design corresponds to slightly
smaller nanocolloids with mutually touching polystyrene
shells of thickness of 3 nm, namely, ap=13 nm and d
=6 nm, a=R0−ap−d /2=22 nm. This geometry corre-
sponds to five effective rings Nr=5: one ring with nine col-
loids, two rings with five colloids, and two rings with three
colloids. The number of colloidal particles in a MNC is large
enough to apply the model of the continuous metashell. The
concentration of MNC in the array for which the permeabil-
ity is depicted in Fig. 5 was taken the same as in the previous
example: NMNC=95−3 nm−3. The good agreement between
two models was obtained. Although the second model ig-
nores the higher magnetic resonances that are revealed in
interacting nanorings by the fist model, these resonances are
weak and have no practical meaning for prospective applica-
tions.

The reduction in the resonant frequency in Fig. 5 is sig-
nificant: 226 THz, i.e., 0.3�P. The resonant wavelength in
the host medium is equal to �r�430 nm, and the optical
size of the whole scatterer is equal to Dp /�r�0.25, which
presumably corresponds to the negligible of spatial disper-
sion.

Higher magnitude of the Lorentz resonance in Fig. 5 com-
pared to Fig. 4 means that we can reduce the concentration of
MNC still preserving the negative permeability region. The
reduction in concentration will make the manufacturing of
the metamaterial easier. The results depicted in Figs. 6�a� and
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FIG. 6. �Color online� Effective permeability of the array of MNC with sizes Dp=108 nm and a=22 nm hosted in the matrix with
�h=2.2, in which the concentration of MNC is NMNC=110 nm−3. �a� ap=13 nm and d=6 nm. �b� ap=12.5 nm and d=6 nm.
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FIG. 5. �Color online� Effective permeability of the array of MNC with sizes Dp=108 nm, a=22 nm, ap=13 nm, and d=6 nm hosted
in the matrix with �h=2.2, in which the concentration of MNC is NMNC=95−3 nm−3. �a� First model of the interaction of nanocolloids. �b�
Second model of the interaction of nanocolloids.
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6�b� are obtained �using the first model� for NMNC
=110−3 nm−3 instead of NMNC=95−3 nm−3 as in the previous
case. This case corresponds to the simple-cubic lattice with
period D=110 nm.

The difference between two plots in Figs. 6�a� and 6�b� is
determined by a 1 nm difference in the radii of plasmonic
nanospheres, and demonstrates how sensible is the magnetic
response of MNC to the deviation of its parameters.

Now let us discuss the possibility of realizing the doubly-
negative medium. It turns out that the electromagnetic inter-
action of nanocolloids has more impact to the magnetic-
resonance frequency than to the electric resonance one. The
redshift of the electric resonance does not exceed 3%–5%
even for Nr�1. This situation cannot be corrected using the
MENC geometry, i.e., the central metal core. The only way
we found to engineer overlapping resonance bands was to
decrease the interaction of nanocolloids making their separa-
tion d larger than 3 nm as it is shown in Fig. 3. In Fig. 7�a�
we depict the permittivity and permeability of a bcc lattice of
MENC with the following dimensions: D=160 nm, Dp
=146 nm, a=19 nm, b=16 nm, ap=23 nm, and d
=17 nm �notations are shown in Figs. 1 and 3�. Although
both material parameters are negative in the same frequency
range, the electric losses are very high. Also, the regime
Re���=Re����0 which is considered in the literature as
promising for creating the Veselago-Pendry superlens35 is not
achievable for this design. Better control of the resonant size
of MENC and of values of Re��� corresponds to the use of
different metals for the central core and for nanocolloids of
the metashell. In Fig. 7�a� we depict the permittivity and
permeability of a bcc lattice of MENC with D=140 nm,
Dp=134 nm, a=24 nm, b=18 nm, ap=18 nm, and d
=27 nm. Here the central core is from gold. Although the
plasma frequency of gold only slightly differs from that of
silver, the structure is very sensitive to the material param-
eters of metal nanoparticles, and the combination of silver
and gold particles allows us to better engineer the material

parameters. In this design we theoretically realize the regime
Re����Re����0 around 670 THz. However, the magnetic
losses are rather high in this frequency range. Also, it is
worth noticing that both electric and magnetic-resonance fre-
quencies are close to �P, i.e., are also rather high. Even for a
bcc lattice shown in Fig. 3�b� the lattice period D in the
resonance range exceeds � /4, and the Maxwell-Garnett
model we used above can give only a qualitative estimation
of material parameters of the doubly-negative medium.

V. CONCLUSIONS

In the present paper we have developed the idea of the
resonant optical magnetism in its isotropic variant, modify-
ing the known design of optical magnetic scatterers sug-
gested in Ref. 19 in such a way that it would be possible to
prepare an optically isotropic array with resonant permeabil-
ity using existing nanotechnologies. The suggested design is
feasible as a cubic lattice of core-shell nanoclusters in a liq-
uid or porous matrix. Nanoclusters are formed by core-shell
nanoparticles �dielectric-covered metal colloids� attached to
silica cores. Two theoretical models are used to describe the
material parameters of such arrays. Their mutual agreement
allows us to believe that both models are adequate. The elec-
tromagnetic mutual coupling of nanocolloids helps to
strongly reduce the magnetic resonant frequency for the
given size of a nanocluster compared to the frequency of the
plasmonic resonance of a single nanocolloid. This presum-
ably allows this structure to avoid strong spatial dispersion.

The possibility to realize a doubly-negative medium with
this design is discussed. The regime when the effective per-
mittivity and permeability of the composite are negative and
even equal to one another is theoretically engineered. How-
ever, this has been achieved by the price of high losses.
Further optimization of the structure, validation of the sug-
gested model by full-wave numerical simulations, and ex-
periments are planned for the near future.
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FIG. 7. �Color online� Effective permittivity �thin red lines� and permeability �thick blue lines� of two bcc lattices of MENC with periods
�a� D=160 nm and all silver cores and �b� D=140 nm and one gold core. Real and imaginary parts of material parameters are shown by
solid and dashed lines, respectively.
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